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• Inductor datasheets commonly show inductance increasing with 
frequency, but this is actually an effect caused by parallel 
capacitance

• This issue was raised by Dr. Ray Ridley

• This presentation proposes a method of compensating for the 
capacitive effects to more accurately determine the inductance and 
resistance values

Overview
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• Inductance and resistance measurements were made on 
a Coilcraft 15 µH SER2918H-153 inductor with an 
HP4194A network analyzer

• Corrections to Ls and Rs were made using the proposed 
method resulting in the corrected values Lsc and Rsc

Example Capacitive Correction
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• The series inductances and series resistances are measured over a 
range of frequencies and then converted to series reactances and 
series resistances

• The parallel capacitance is identified by analyzing the measured 
data, and it is assumed to be constant

• For each measured datapoint, the series impedances are converted 
to the equivalent parallel form

• The effects of the parallel capacitance are removed

• The corrected parallel impedance data is converted back to the 
series form and then the series reactances are converted to series 
inductances

• Parallel capacitance can be added to RL circuit models

Steps of the Correction Method
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• The HP4194A network analyzer calculated equivalent 
circuit values from measured impedance data, but other 
methods are discussed later in the presentation

• The parallel capacitance value is used in the corrections

Parallel Capacitance Identification
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• The transformations are valid at one frequency

• The series reactance and series resistance are 
converted to the equivalent parallel form for each 
measured frequency

Series-Parallel Transformation
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• The corrected parallel reactance value is determined by 
using the subtractive form of the parallel impedance 
formula

Capacitance Correction
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• The corrected parallel reactances and resistances are converted 
back to the equivalent series form for each measured frequency and 
the series reactance is converted to series inductance

Parallel-Series Transformation
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• The parallel capacitance used in the corrections can be 
added back into an RL circuit model to make an RLC 
model

Parallel Capacitor Added
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• The method also works for multi-winding magnetics

• Coilcraft F5593-AL high-impedance common-mode choke

• The corrected data extends the frequency range for accurate L-R 
measurements by almost a decade

• Multiple resonances are typical, but only the first resonance is corrected

2nd Example of Capacitive Correction
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• The low-frequency inductance can be determined from the initial 
slope of the impedance plot [4] or by direct measurement

Extracting the Low-frequency Inductance
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• The parallel capacitance can be determined from the resonant 
frequency  and the low-frequency inductance

• See [9] for other methods of determining the parallel capacitance

Extracting the Parallel Capacitance
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• The parallel resistance can be determined from the 
magnitude of the impedance at the resonant frequency 

Extracting the Parallel Resistance

• The peak of the impedance 
curve occurs slightly below 
resonance due to inductor 
losses that could be 
modeled as a series 
resistance 
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• Functions are defined for the impedance magnitude and 
phase in terms of the component values and frequency

Extracting RLC Values Using a Mathcad Solver
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• Normalized functions are defined for the errors between 
impedance magnitude and phase and the measured data

Error Functions for the Mathcad Solver
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• The capacitor and resistor were varied from 50% to 150% of the 
known values to examine the error function response

• The resistor scaling doesn’t produce phase error at 

Error Function Responses at  
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• The Minerr solver minimizes the error by adjusting the 
values of and using a Levenberg-Marquardt algorithm

Mathcad Minerr Solver
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• The error functions are set to operate at the highest value of the 
impedance magnitude in the measured data set which may or may not 
include the resonant frequency

• The correction capacitance can be calculated by using the low-
frequency L, and L and R values at a higher frequency

Solver Operating Point
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• The solver gives reasonably good results even if the peak 
value of the impedance isn’t included in the data set

Extracting RLC Values Below Resonance

With peak of Zmag

Without peak of Zmag
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• A Foster Network can be used to extend the valid frequency range 
compared to a simple RLC model [5, 6]

• More complicated models have also been developed [7]

Common Equivalent Circuits

Type 1 Foster Network RL model with 
added parallel capacitor

Simple RLC model
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• The proposed correction method improves the accuracy 
of inductance measurements thereby enabling the 
generation of more accurate wideband equivalent circuit 
models of magnetic devices based on measured data

• The method also enables producing more accurate 
datasheet plots for commercial magnetics

• RLC values can be derived from measured impedance 
data even if the peak impedance isn’t in the data set

• The method also works for multi-winding magnetics

Conclusions
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