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Presentation Outline

• Introduction

• Modeling magnetic coupling with electric circuit equations

• Measuring electric circuit model parameters

• Equivalent circuits for transformers and coupled inductors

• Magnetic circuit modeling overview

• Tips for creating magnetic circuit models

• Deriving electric model parameters from magnetic model parameters

• Matrix theory requirements for coupling stability

• Examples



Motivation For This Presentation

• Magnetic coupling often seems to be mysterious and hard to quantify

• I had the good fortune of having a mentor, Dr. James H. Spreen, who 
taught me how to analyze magnetic coupling

• Goal: help make magnetic coupling less mysterious by showing how to 
model it, measure it and use it in circuit analysis and simulation
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What Is Magnetic Coupling?

• Two windings are coupled when some of the magnetic flux produced by 
currents flowing in either of the windings passes through both windings

• Only part of the flux produced by a current in one winding reaches other 
windings 
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Magnetic Coupling Modeling Options

• Electric circuit: inductances and couplings

• Linear model

• Model parameters can be determined from circuit measurements

• Parameters can be measured with fairly high accuracy if appropriate 
measurement procedures are followed

• No information on flux paths or flux levels
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Magnetic Coupling Modeling Options

• Magnetic circuit: reluctance circuit and electrical-to-magnetic 
interfaces for each winding

• Explicitly shows flux paths as magnetic circuit elements

• Flux paths and reluctances are only approximations

• Works with linear or nonlinear reluctance models

• Electrical circuit parameters can be calculated from magnetic circuit 
parameters, but not vice-versa
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V-I Equations For an Isolated Inductor

𝑣𝑣 = 𝐿𝐿
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

𝑣𝑣 = jω𝐿𝐿𝐿𝐿

Time domain

Frequency domain

(Current flows into
  positive terminal)
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Time-domain Equations For Two windings

𝑣𝑣1 = 𝐿𝐿11
𝑑𝑑𝑖𝑖1
𝑑𝑑𝑑𝑑

+ 𝐿𝐿12
𝑑𝑑𝑖𝑖2
𝑑𝑑𝑑𝑑

𝑣𝑣2 = 𝐿𝐿21
𝑑𝑑𝑖𝑖1
𝑑𝑑𝑑𝑑

+ 𝐿𝐿22
𝑑𝑑𝑖𝑖2
𝑑𝑑𝑑𝑑𝐿𝐿12 = 𝐿𝐿21 = Mutual inductance 

𝐿𝐿11 = Self − inductance of winding 1

𝐿𝐿22 = Self − inductance of winding 2
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Time-domain Equations For N Windings

𝑣𝑣1 = 𝐿𝐿11
𝑑𝑑𝑖𝑖1
𝑑𝑑𝑑𝑑

+ 𝐿𝐿12
𝑑𝑑𝑖𝑖2
𝑑𝑑𝑑𝑑

+ 𝐿𝐿13
𝑑𝑑𝑖𝑖3
𝑑𝑑𝑑𝑑

+ ⋯+ 𝐿𝐿1𝑁𝑁
𝑑𝑑𝑖𝑖𝑁𝑁
𝑑𝑑𝑑𝑑

𝑣𝑣2 = 𝐿𝐿12
𝑑𝑑𝑖𝑖1
𝑑𝑑𝑑𝑑

+ 𝐿𝐿22
𝑑𝑑𝑖𝑖2
𝑑𝑑𝑑𝑑

+ 𝐿𝐿23
𝑑𝑑𝑖𝑖3
𝑑𝑑𝑑𝑑

+ ⋯+ 𝐿𝐿2𝑁𝑁
𝑑𝑑𝑖𝑖𝑁𝑁
𝑑𝑑𝑑𝑑

𝑣𝑣𝑁𝑁 = 𝐿𝐿𝑁𝑁𝑁
𝑑𝑑𝑖𝑖1
𝑑𝑑𝑑𝑑

+ 𝐿𝐿𝑁𝑁𝑁
𝑑𝑑𝑖𝑖2
𝑑𝑑𝑑𝑑

+ 𝐿𝐿𝑁𝑁𝑁
𝑑𝑑𝑖𝑖3
𝑑𝑑𝑑𝑑

+ ⋯+ 𝐿𝐿𝑁𝑁𝑁𝑁
𝑑𝑑𝑖𝑖𝑁𝑁
𝑑𝑑𝑑𝑑

𝑣𝑣 = 𝐿𝐿
𝑑𝑑
𝑑𝑑𝑑𝑑

𝑖𝑖

𝑣𝑣1
𝑣𝑣2
⋮
𝑣𝑣𝑁𝑁

=

𝐿𝐿11 𝐿𝐿12 ⋯ 𝐿𝐿1𝑁𝑁
𝐿𝐿21 𝐿𝐿22 ⋯ 𝐿𝐿2𝑁𝑁
⋮ ⋮ ⋱ ⋮
𝐿𝐿𝑁𝑁𝑁 𝐿𝐿𝑁𝑁𝑁 ⋯ 𝐿𝐿𝑁𝑁𝑁𝑁

𝑑𝑑
𝑑𝑑𝑑𝑑

𝑖𝑖1
𝑖𝑖2
⋮
𝑖𝑖𝑁𝑁
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Frequency-domain Equations For Two Windings

𝑣𝑣1 = jω𝐿𝐿11𝑖𝑖1 + jω𝐿𝐿12𝑖𝑖2

𝑣𝑣2 = jω𝐿𝐿21𝑖𝑖1 + jω𝐿𝐿22𝑖𝑖2𝐿𝐿12 = 𝐿𝐿21 = Mutual inductance 

of winding 2
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Frequency-domain Equations For N Windings

NN iLiLiLiLv 13132121111 jωjωjωjω ++++= 

𝑣𝑣2 = jω𝐿𝐿12𝑖𝑖1 + jω𝐿𝐿22𝑖𝑖2 + jω𝐿𝐿23𝑖𝑖3 + ⋯+ jω𝐿𝐿2𝑁𝑁𝑖𝑖𝑁𝑁

𝑣𝑣𝑁𝑁 = jω𝐿𝐿𝑁𝑁𝑁𝑖𝑖1 + jω𝐿𝐿𝑁𝑁𝑁𝑖𝑖2 + jω𝐿𝐿𝑁𝑁𝑁𝑖𝑖3 + ⋯+ jω𝐿𝐿𝑁𝑁𝑁𝑁𝑖𝑖𝑁𝑁

𝑣𝑣 = jω 𝐿𝐿 𝑖𝑖

𝑣𝑣1
𝑣𝑣2
⋮
𝑣𝑣𝑁𝑁

= jω

𝐿𝐿11 𝐿𝐿12 ⋯ 𝐿𝐿1𝑁𝑁
𝐿𝐿21 𝐿𝐿22 ⋯ 𝐿𝐿2𝑁𝑁
⋮ ⋮ ⋱ ⋮
𝐿𝐿𝑁𝑁𝑁 𝐿𝐿𝑁𝑁𝑁 ⋯ 𝐿𝐿𝑁𝑁𝑁𝑁

𝑖𝑖1
𝑖𝑖2
⋮
𝑖𝑖𝑁𝑁
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Inductance Matrix Symmetry

• The inductance matrix is symmetric due to the reciprocity theorem (This is 
required for conservation of energy)

 L. O. Chua, Linear and Nonlinear Circuits.  New York:  McGraw-Hill, 1987, 
pp. 771-780 

𝐿𝐿𝑞𝑞𝑞𝑞 = 𝐿𝐿𝑟𝑟𝑟𝑟

• This principle can be derived from Maxwell’s equations:

 C. G. Montgomery, R. H. Dicke, and E. M. Purcell, Ed., Principles of 
Microwave Circuits.  New York:  Dover Publications, 1965

• It can also be derived from a stored energy argument:

 R. R. Lawrence, Principles of Alternating Currents.   New York:  McGraw-
Hill, 1935, pp. 187-188
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Coupling Coefficient For Two Windings

𝑘𝑘 =
𝐿𝐿12
𝐿𝐿11𝐿𝐿22

=
𝐿𝐿21
𝐿𝐿11𝐿𝐿22

=
𝑀𝑀
𝐿𝐿1𝐿𝐿2 −1 ≤ 𝑘𝑘 ≤ 1
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Coupling Coefficients For N Windings

𝑘𝑘𝑞𝑞𝑞𝑞 =
𝐿𝐿𝑞𝑞𝑞𝑞
𝐿𝐿𝑞𝑞𝑞𝑞𝐿𝐿𝑟𝑟𝑟𝑟

𝐾𝐾 =
1 𝑘𝑘12 𝑘𝑘13
𝑘𝑘21 1 𝑘𝑘23
𝑘𝑘31 𝑘𝑘32 1

=

1
𝐿𝐿12
𝐿𝐿11𝐿𝐿22

𝐿𝐿13
𝐿𝐿11𝐿𝐿33

𝐿𝐿21
𝐿𝐿22𝐿𝐿11

1
𝐿𝐿23
𝐿𝐿22𝐿𝐿33

𝐿𝐿31
𝐿𝐿33𝐿𝐿11

𝐿𝐿32
𝐿𝐿33𝐿𝐿22

1

𝑘𝑘𝑞𝑞𝑞𝑞 = 𝑘𝑘𝑟𝑟𝑟𝑟
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Coupling Measurement Techniques: 
Series-aiding Series-opposing Method
• Coupling measurements are made for each pair of windings

• Measure the inductance of each pair of windings connected in the series-
aiding manner

• Measure the inductance of each pair of windings connected in the series-
opposing manner 

𝑘𝑘 =
𝐿𝐿12
𝐿𝐿1𝐿𝐿2

=
𝐿𝐿𝑎𝑎𝑎𝑎𝑎𝑎 − 𝐿𝐿𝑜𝑜𝑜𝑜𝑜𝑜

4 𝐿𝐿1𝐿𝐿2
𝐿𝐿12 =

𝐿𝐿𝑎𝑎𝑎𝑎𝑎𝑎 − 𝐿𝐿𝑜𝑜𝑜𝑜𝑜𝑜
4

series-aiding, Laid series-opposing, Lopp 

L2 L1 
L2 L1 



Series-aiding Series-opposing Coupling Formula 
Derivation

• Start with the fundamental VI equations

𝑣𝑣1 = jω𝐿𝐿11𝑖𝑖1 + jω𝐿𝐿12𝑖𝑖2

𝑣𝑣2 = jω𝐿𝐿12𝑖𝑖1 + jω𝐿𝐿22𝑖𝑖2

• Write down what is known for the series-aiding configuration

series-aiding, Laid 

L2 L1 

𝑖𝑖2 = 𝑖𝑖1

𝑣𝑣𝑎𝑎𝑎𝑎𝑎𝑎 = 𝑣𝑣1 + 𝑣𝑣2

𝑣𝑣𝑎𝑎𝑎𝑎𝑎𝑎 = jω𝐿𝐿𝑎𝑎𝑎𝑎𝑎𝑎𝑖𝑖1

𝑖𝑖1 𝑖𝑖2
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−1 ≤ 𝑘𝑘12 ≤ 1



• Substitute assumptions for series aiding into V-I equations

𝑣𝑣1 = jω𝐿𝐿11𝑖𝑖1 + jω𝐿𝐿12𝑖𝑖1

𝑣𝑣2 = jω𝐿𝐿21𝑖𝑖1 + jω𝐿𝐿22𝑖𝑖1

𝑣𝑣𝑎𝑎𝑎𝑎𝑎𝑎 = jω𝐿𝐿11𝑖𝑖1 + jω𝐿𝐿12𝑖𝑖1 + jω𝐿𝐿12𝑖𝑖1 + jω𝐿𝐿22𝑖𝑖1

• Simplify 𝑣𝑣𝑎𝑎𝑎𝑎𝑎𝑎 = jω 𝐿𝐿11 + 2𝐿𝐿12 + 𝐿𝐿22 𝑖𝑖1

𝑣𝑣𝑎𝑎𝑎𝑎𝑎𝑎 = jω𝐿𝐿𝑎𝑎𝑎𝑎𝑎𝑎𝑖𝑖1

𝐿𝐿𝑎𝑎𝑎𝑎𝑎𝑎 = 𝐿𝐿11 + 2𝐿𝐿12 + 𝐿𝐿22

• Recall

• Therefore

• Recall 𝑣𝑣𝑎𝑎𝑎𝑎𝑎𝑎 = 𝑣𝑣1 + 𝑣𝑣2

• Substitute

SLIDE # 17



• Write down what is known for the series-opposing configuration

𝑖𝑖2 = −𝑖𝑖1

𝑣𝑣𝑜𝑜𝑜𝑜𝑜𝑜 = 𝑣𝑣1 − 𝑣𝑣2

𝑣𝑣𝑜𝑜𝑜𝑜𝑜𝑜 = jω𝐿𝐿𝑜𝑜𝑜𝑜𝑜𝑜𝑖𝑖1
series-opposing, Lopp 

L2 L1 

𝑖𝑖1 𝑖𝑖2

𝑣𝑣1 = jω𝐿𝐿11𝑖𝑖1 − jω𝐿𝐿12𝑖𝑖1

𝑣𝑣2 = jω𝐿𝐿21𝑖𝑖1 − jω𝐿𝐿22𝑖𝑖1

𝑣𝑣𝑜𝑜𝑜𝑜𝑜𝑜 = jω𝐿𝐿11𝑖𝑖1 − jω𝐿𝐿12𝑖𝑖1 − jω𝐿𝐿12𝑖𝑖1 − jω𝐿𝐿22𝑖𝑖1

• Recall 𝑣𝑣𝑜𝑜𝑜𝑜𝑜𝑜 = 𝑣𝑣1 − 𝑣𝑣2

• Substitute

• Substitute assumptions for series-opposing into V-I equations
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• Simplify 𝑣𝑣𝑜𝑜𝑜𝑜𝑜𝑜 = jω 𝐿𝐿11 − 2𝐿𝐿12 + 𝐿𝐿22 𝑖𝑖1

𝑣𝑣𝑜𝑜𝑜𝑜𝑜𝑜 = jω𝐿𝐿𝑜𝑜𝑜𝑜𝑜𝑜𝑖𝑖1

𝐿𝐿𝑜𝑜𝑜𝑜𝑜𝑜 = 𝐿𝐿11 − 2𝐿𝐿12 + 𝐿𝐿22

• Recall

• Therefore

𝐿𝐿𝑎𝑎𝑎𝑎𝑎𝑎 − 𝐿𝐿𝑜𝑜𝑜𝑜𝑜𝑜 = 4𝐿𝐿12

• Recall 𝐿𝐿𝑎𝑎𝑎𝑎𝑎𝑎 = 𝐿𝐿11 + 2𝐿𝐿12 + 𝐿𝐿22

• Subtract

• Solve 𝐿𝐿12 =
𝐿𝐿𝑎𝑎𝑎𝑎𝑎𝑎 − 𝐿𝐿𝑜𝑜𝑜𝑜𝑜𝑜

4

𝑘𝑘 =
𝐿𝐿𝑎𝑎𝑎𝑎𝑎𝑎 − 𝐿𝐿𝑜𝑜𝑜𝑜𝑜𝑜
4 𝐿𝐿11𝐿𝐿22

• Therefore

• Recall 𝑘𝑘 =
𝐿𝐿12
𝐿𝐿11𝐿𝐿22
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Coupling Measurement Techniques: 
Voltage Ratio Method
• Coupling measurements are made for each pair of windings

• Measure the open-circuit voltage at each winding when a driving voltage 
is applied to the other winding

voc qr = voltage measured at winding q when winding r is driven

𝑘𝑘 =
𝑣𝑣𝑜𝑜𝑜𝑜𝑜𝑜
𝑣𝑣𝑑𝑑𝑑𝑑

𝑣𝑣𝑜𝑜𝑜𝑜𝑜𝑜
𝑣𝑣𝑑𝑑𝑑𝑑

vd rq = voltage measured at winding r when winding r is driven and the
         voltage at winding q is being measured

• Measurements can be corrupted by capacitance and loading

• Particularly suited for measurements between windings on different legs 
of three-phase ungapped transformers because the normal operating 
voltage can be used for the driving voltage.



Voltage Ratio Method 
Coupling Formula Derivation
• Start with the fundamental VI equations

𝑣𝑣1 = jω𝐿𝐿11𝑖𝑖1 + jω𝐿𝐿12𝑖𝑖2

𝑣𝑣2 = jω𝐿𝐿12𝑖𝑖1 + jω𝐿𝐿22𝑖𝑖2

• Find i1 and v2 when winding 1 is driven and winding 2 is unloaded

𝑣𝑣2 = 𝑣𝑣𝑜𝑜𝑜𝑜𝑜𝑜 = jω𝐿𝐿12𝑖𝑖1

• Substitute i1,
    simplify and
    rearrange
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𝑣𝑣1 = 𝑣𝑣𝑑𝑑𝑑𝑑 = jω𝐿𝐿11𝑖𝑖1 𝑖𝑖1 =
𝑣𝑣𝑑𝑑𝑑𝑑
jω𝐿𝐿11

𝑣𝑣𝑜𝑜𝑜𝑜𝑜𝑜 = jω𝐿𝐿12
𝑣𝑣𝑑𝑑𝑑𝑑
jω𝐿𝐿11

𝑣𝑣𝑜𝑜𝑜𝑜𝑜𝑜
𝑣𝑣𝑑𝑑𝑑𝑑

=
𝐿𝐿12
𝐿𝐿11



• Find i2 and v1 when winding 2 is driven and winding 1 is unloaded

𝑣𝑣1 = 𝑣𝑣𝑜𝑜𝑜𝑜𝑜𝑜 = jω𝐿𝐿12𝑖𝑖2

• Substitute i2,
    simplify and
    rearrange
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𝑣𝑣2 = 𝑣𝑣𝑑𝑑𝑑𝑑 = jω𝐿𝐿22𝑖𝑖2 𝑖𝑖2 =
𝑣𝑣𝑑𝑑𝑑𝑑
jω𝐿𝐿22

𝑣𝑣𝑜𝑜𝑜𝑜𝑜𝑜 = jω𝐿𝐿12
𝑣𝑣𝑑𝑑𝑑𝑑
jω𝐿𝐿22

𝑣𝑣𝑜𝑜𝑜𝑜𝑜𝑜
𝑣𝑣𝑑𝑑𝑑𝑑

=
𝐿𝐿12
𝐿𝐿22

• Recall
𝑣𝑣𝑜𝑜𝑜𝑜𝑜𝑜
𝑣𝑣𝑑𝑑𝑑𝑑

=
𝐿𝐿12
𝐿𝐿11

• Multiply
𝑣𝑣𝑜𝑜𝑜𝑜𝑜𝑜
𝑣𝑣𝑑𝑑𝑑𝑑

𝑣𝑣𝑜𝑜𝑜𝑜𝑜𝑜
𝑣𝑣𝑑𝑑𝑑𝑑

=
𝐿𝐿12
𝐿𝐿11

𝐿𝐿12
𝐿𝐿22

𝑘𝑘 =
𝑣𝑣𝑜𝑜𝑜𝑜𝑜𝑜
𝑣𝑣𝑑𝑑𝑑𝑑

𝑣𝑣𝑜𝑜𝑜𝑜𝑜𝑜
𝑣𝑣𝑑𝑑𝑑𝑑
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• Take the square root
𝑣𝑣𝑜𝑜𝑜𝑜𝑜𝑜
𝑣𝑣𝑑𝑑𝑑𝑑

𝑣𝑣𝑜𝑜𝑜𝑜𝑜𝑜
𝑣𝑣𝑑𝑑𝑑𝑑

=
𝐿𝐿12
𝐿𝐿11𝐿𝐿22

= 𝑘𝑘

𝑘𝑘 =
𝑣𝑣𝑜𝑜𝑜𝑜𝑜𝑜
𝑣𝑣𝑑𝑑𝑑𝑑

𝑣𝑣𝑜𝑜𝑜𝑜𝑜𝑜
𝑣𝑣𝑑𝑑𝑑𝑑

• Therefore
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Coupling Measurement Techniques: 
Self and Leakage Inductance Method
• Coupling measurements are made for each pair of windings

• Measure the self inductance of each winding (L11 and L22)

• The inductance measured at a winding when another winding is shorted 
is called the leakage inductance

Lleak qr = inductance measured at winding q when winding r is shorted

𝑘𝑘12 = 1 −
𝐿𝐿𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙
𝐿𝐿11

𝑘𝑘21 = 1 −
𝐿𝐿𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙
𝐿𝐿22

If perfect measurements are made, k12 = k21



Self and Leakage Inductance Method
Coupling Formula Derivation

• Start with the fundamental VI equations

𝑣𝑣1 = jω𝐿𝐿11𝑖𝑖1 + jω𝐿𝐿12𝑖𝑖2

𝑣𝑣2 = jω𝐿𝐿12𝑖𝑖1 + jω𝐿𝐿22𝑖𝑖2
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• Find the leakage inductance at winding 1 when winding 2 is shorted, L12s 
Write down what is known for that condition

𝑣𝑣2 = 0 = jω𝐿𝐿12𝑖𝑖1 + jω𝐿𝐿22𝑖𝑖2

𝑣𝑣1 = jω𝐿𝐿𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑖𝑖1

0 = 𝐿𝐿12𝑖𝑖1 + 𝐿𝐿22𝑖𝑖2• Simplify



𝑣𝑣1 = jω𝐿𝐿𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑖𝑖1 = jω𝐿𝐿11𝑖𝑖1 + jω𝐿𝐿12𝑖𝑖2

• Substitute 
value of i2

• Combine 
equations for v1

• Solve for i2 𝑖𝑖2 = −𝑖𝑖1
𝐿𝐿12
𝐿𝐿22

• Simplify 𝐿𝐿𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑖𝑖1 = 𝐿𝐿11𝑖𝑖1 + 𝐿𝐿12𝑖𝑖2

𝐿𝐿𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 = 𝐿𝐿11 −
𝐿𝐿122

𝐿𝐿22
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• Rearrange

𝐿𝐿𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙
𝐿𝐿11

= 1 −
𝐿𝐿122

𝐿𝐿11𝐿𝐿22
• Divide by L11

1 −
𝐿𝐿12s
𝐿𝐿11

=
𝐿𝐿122

𝐿𝐿11𝐿𝐿22

1 −
𝐿𝐿𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙
𝐿𝐿11

=
𝐿𝐿12
𝐿𝐿11𝐿𝐿22

• Take square root

SLIDE # 27

• Similar formula 
when winding 1 is 
shorted

𝑘𝑘 = 1 −
𝐿𝐿𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙
𝐿𝐿22

𝑘𝑘 = 1 −
𝐿𝐿𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙
𝐿𝐿11

• Therefore
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Self Inductance Measurement Tips

• The ratios of the self inductances of windings on the same core will be 
nearly equal to the square of the turns ratios

• The ratios of the inductances are more important than the exact values

• Measure at a frequency where the Q is high                                             
(It doesn’t have to be at the operating frequency)

• Avoid measuring inductance close to self-resonant frequencies

• Take all measurements at the same frequency
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Self Inductance Measurement Tips

For ungapped cores:

• The ratios of the inductances are more important than the exact values

• Inductance measurements may vary with amplitude of the test signal

• Best results are obtained if the core excitation is equal for all 
measurements

• If possible, adjust the measurement drive voltage to be proportional to the 
turns in order to keep the flux density constant

• Inductance measurements can be made at flux levels near normal 
operating levels using a power amplifier and a network analyzer
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Leakage Inductance Measurement Tips

• Avoid measuring inductance close to self-resonant frequencies

• Winding resistances decrease the measured coupling coefficients when 
using the self and leakage inductance method

• Measure at a frequency where the Q is high                                               
(It doesn’t have to be at the operating frequency)

• For each pair of windings, shorting the winding with the highest Q gives 
the best results.
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Coupling Coefficient Value Discrepancies

• Use the same value for k12 and k21 when performing circuit calculations 

• If k12 ≠ k21, the one with the largest value is usually the most accurate
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Coupling Coefficient Significant Digits

• Inductances can typically be measured to at least two significant figures

• Use enough significant digits for coupling coefficients in calculations and 
simulations to be able to accurately reproduce the leakage inductance

𝐿𝐿𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 = 𝐿𝐿11 1 − 𝑘𝑘122

• Generally use at least four significant digits when the coupling coefficient is 
close to 1 (k is known to more significant digits than the measured 
inductances it was derived from)

𝑘𝑘 = 1 −
𝐿𝐿𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙
𝐿𝐿11



SLIDE # 33

Coupling Polarity Conventions
• Polarity dots indicate that all windings which have dots of the same style 

will have matching voltage polarities between the dotted and un-dotted 
terminals when one winding is driven and all of the other windings are 
open-circuited

• By convention, positive current flows into the terminals that are labeled as 
being positive regardless of the polarity dot positions

• Voltage reference polarities can assigned in whatever manner is 
convenient by changing the polarity of the coupling coefficient

−1 ≤ 𝑘𝑘 ≤ 1

Pin-for-pin equivalent electrical behavior
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Three-legged Transformer Coupling Coefficient   
Dot Convention
• Three types of polarity dots are required for a three-legged transformer

• There are three coupling coefficients

• The triple product of the three coupling coefficients is negative

• It is simplest to make all three of the coupling coefficients negative

𝑘𝑘12𝑘𝑘23𝑘𝑘31 ≤ 0



Equivalent Circuits For Two Windings
• Many possible circuits, but only three parameters are required

• My favorite is the Cantilever model: two inductors and one ideal 
transformer

𝐿𝐿𝑏𝑏 = 𝐿𝐿11 − 𝐿𝐿𝑎𝑎 𝑁𝑁𝑒𝑒 =
𝐿𝐿22
𝐿𝐿𝑏𝑏

k

𝐿𝐿11 𝐿𝐿22
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𝐿𝐿𝑎𝑎 = 𝐿𝐿𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙

Measure the inductance 
at winding 1 with winding 
2 shorted

Measure the self 
inductance of winding 1 
and subtract La

Measure the self inductance of 
winding 2 and calculate above 
equation

𝐿𝐿𝑎𝑎

𝐿𝐿𝑏𝑏

1:𝑁𝑁𝑒𝑒

Ideal

1 2



Cantilever Model Derivation

• If winding 2 is shorted, then the inductance measured at winding 1 is 
simply La because the ideal transformer shorts out Lb. Thus La is equal to 
the leakage inductance measured at winding 1.

𝐿𝐿𝑎𝑎

𝐿𝐿𝑏𝑏

1:𝑁𝑁𝑒𝑒

Ideal

1 2

k

𝐿𝐿11 𝐿𝐿22

𝐿𝐿𝑎𝑎 = 𝐿𝐿𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙

𝐿𝐿𝑎𝑎 = 𝐿𝐿11 1 − 𝑘𝑘2

• To convert the coupled inductor model 
    to the cantilever model, recall that

𝐿𝐿𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 = 𝐿𝐿11 1 − 𝑘𝑘2

• Therefore
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• By observation, Lb must equal the open-circuit inductance of winding 1 
minus La

𝐿𝐿𝑎𝑎

𝐿𝐿𝑏𝑏

1:𝑁𝑁𝑒𝑒

Ideal

1 2

k

𝐿𝐿11 𝐿𝐿22

𝐿𝐿𝑏𝑏 = 𝐿𝐿11 − 𝐿𝐿𝑎𝑎

• To convert the coupled inductor model to 
the cantilever model, recall that

𝐿𝐿𝑎𝑎 = 𝐿𝐿11 1 − 𝑘𝑘2

• Substitute 𝐿𝐿𝑏𝑏 = 𝐿𝐿11 − 𝐿𝐿11 1− 𝑘𝑘2

𝐿𝐿𝑏𝑏 = 𝑘𝑘2𝐿𝐿11• Therefore
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• The inductance of winding 2, L22 , is equal to Lb reflected 
through the ideal transformer 𝐿𝐿22 = 𝑁𝑁𝑒𝑒2𝐿𝐿𝑏𝑏

• Solve for the turns ratio 𝑁𝑁𝑒𝑒 =
𝐿𝐿22
𝐿𝐿𝑏𝑏

𝑁𝑁𝑒𝑒 =
1
𝑘𝑘

𝐿𝐿22
𝐿𝐿11

𝐿𝐿𝑏𝑏 = 𝑘𝑘2𝐿𝐿11• Recall

• Thus, in terms of the coupled 
inductor model

𝐿𝐿𝑎𝑎

𝐿𝐿𝑏𝑏

1:𝑁𝑁𝑒𝑒

Ideal

1 2

k

𝐿𝐿11 𝐿𝐿22
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Two Leakage Inductance Model

• Two Leakage Inductance model allows the actual turns ratio to be used, 
but it adds unnecessary complexity

• These “leakage inductances” are not equal to the previously-defined 
conventional leakage inductances measured by shorting windings
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𝐿𝐿𝑙𝑙𝑙

𝐿𝐿𝑀𝑀𝑀𝑀𝑀𝑀

21 :NN

Ideal

𝐿𝐿𝑙𝑙𝑙2

1

2
222 








+=

N
NLLL Magl

𝐿𝐿11 = 𝐿𝐿𝑙𝑙𝑙 + 𝐿𝐿𝑀𝑀𝑀𝑀𝑀𝑀









=

1

2
12 N

NLL Mag

11212211
2

1
22122211

2

1 LLLL
N
NLLLL

N
NL leakleakMag −








=−








=

𝑘𝑘 =
𝐿𝐿12
𝐿𝐿11𝐿𝐿22
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2
1

2
2121 jωjω i

N
NLiLv Mag 








==

𝑣𝑣1 = jω𝐿𝐿11𝑖𝑖1 + jω𝐿𝐿12𝑖𝑖2

𝑣𝑣2 = jω𝐿𝐿12𝑖𝑖1 + jω𝐿𝐿22𝑖𝑖2

T Model Derivation
• Start with the fundamental VI equations

• Write down the open-circuit primary voltage due to a current in the 
secondary









=

1

2
12 N

NLL Mag

• By inspection, the mutual inductance is
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𝐿𝐿𝑙𝑙𝑙 = 𝐿𝐿11 − 𝐿𝐿𝑀𝑀𝑀𝑀𝑀𝑀

• Solve for LMag

• Recall the equation for Lleak12 from the derivation of the Self and Leakage 
Inductance model

• Solve for the two “leakage inductances”

12
2

1 L
N
NLMag 








=

𝐿𝐿𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 = 𝐿𝐿11 −
𝐿𝐿122

𝐿𝐿22

• By symmetry, 𝐿𝐿𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 = 𝐿𝐿22 −
𝐿𝐿122

𝐿𝐿11

• Recall 𝐿𝐿11 = 𝐿𝐿𝑙𝑙𝑙 + 𝐿𝐿𝑀𝑀𝑀𝑀𝑀𝑀 𝐿𝐿22 = 𝐿𝐿𝑙𝑙𝑙 + 𝐿𝐿𝑀𝑀𝑀𝑀𝑀𝑀
𝑁𝑁1
𝑁𝑁2

2

𝐿𝐿𝑙𝑙𝑙 = 𝐿𝐿22
𝑁𝑁2
𝑁𝑁1

2

− 𝐿𝐿𝑀𝑀𝑀𝑀𝑀𝑀
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𝐿𝐿12 = 𝐿𝐿11𝐿𝐿22 − 𝐿𝐿𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝐿𝐿22 = 𝐿𝐿11𝐿𝐿22 − 𝐿𝐿𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝐿𝐿11

• Recall

• Therefore 22122211
2

1 LLLL
N
NL leakMag −








=

• Solve for L12

11212211
2

1 LLLL
N
NL leakMag −








=• Also,

12
2

1 L
N
NLMag 








=



Equivalent Circuits For More Than Two Windings

• Many possible circuits, but only N(N+1)/2 parameters are required

• My favorite is the N-Port model
• Exact correspondence to the coupling coefficient model, and easy to implement 

in circuit simulators

• R. W. Erickson and D. Maksimovic, “A multiple-winding magnetics model having 
directly measurable parameters,” in Proc. IEEE Power Electronics Specialists 
Conf., May 1998, pp. 1472-1478

• Extended cantilever model with parasitics:
 K. D. T. Ngo, S. Srinivas, and P. Nakmahachalasint, “Broadband extended 

cantilever model for multi-winding magnetics,” IEEE Trans. Power Electron., vol. 
16, pp. 551-557, July 2001

 K.D.T. Ngo and A. Gangupomu, "Improved method to extract the short-circuit 
parameters of the BECM," Power Electronics Letters, IEEE , vol.1, no.1, pp. 17- 18, 
March 2003
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http://ecee.colorado.edu/%7Erwe/papers/PESC98.pdf
http://ecee.colorado.edu/%7Erwe/papers/PESC98.pdf
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R1

R2 R3 R4 R5

R13 R14
R7

R18

R6

R12
R17 R19

R8 R10 R11R9

R15

R16

Magnetic Devices Can Be Approximately Modeled 
With Magnetic Circuits
• Reluctance paths are not as well defined as electric circuit paths
• Accuracy is improved by using more reluctance elements in the model

Winding 1 Winding 3

High-leakage Transformer
with two E-Cores

Winding 2

R5

R14

R9 R12

MMF2

R3

MMF1

R7

R17

R6

R13

R16

R4

R10

R2

R18

MMF3

R11

R15
R1

R8

R19
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Winding Self Inductance

R5

R14

R9 R12

MMF2

R3

MMF1

R7

R17

R6

R13

R16

R4

R10

R2

R18

MMF3

R11

R15
R1

R8

R19N1

N2

N3

• Replace the MMF source for each winding not being considered with a 
short circuit

• Determine the Thévenin equivalent reluctance,     ,at the MMF source 
representing the winding for which the self inductance is being calculated

• Inductance = turns squared divided by the Thévenin equivalent reluctance

N1

Nx = turns of winding x

Rth1MMF1

𝐿𝐿1 =
𝑁𝑁12

ℜ𝑡𝑡𝑡𝑡

ℜ𝑡𝑡𝑡

short

short
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Leakage Inductances
• Replace the MMF source for each winding not being considered with a 

short circuit
• Replace the MMF source for the shorted winding with an open circuit
• Determine Thévenin equivalent reluctance,     , at the MMF source for the 

winding where the leakage inductance is to be determined
• Inductance = turns squared divided by the Thévenin equivalent reluctance

N1

Nx = turns of winding x

Rth1MMF1

𝐿𝐿𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 =
𝑁𝑁12

ℜ𝑡𝑡𝑡𝑡

ℜ𝑡𝑡𝑡

R5

R14

R9 R12

MMF2

R3

MMF1

R7

R17

R6

R13

R16

R4

R10

R2

R18

MMF3

R11

R15
R1

R8

R19N1

N2

N3 open

short
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Reluctance Modeling References
• R. W. Erickson and D. Maksimovic, Fundamentals of Power Electronics, 

2nd Ed., Norwell, MA: Kluwer Academic Publishers, 2001

• S.-A. El-Hamamsey and Eric I. Chang, “Magnetics Modeling for Computer-
Aided Design of Power Electronics Circuits,” PESC 1989 Record, pp. 635-
645 

• G. W. Ludwig, and S.-A. El Hamamsy “Coupled Inductance and 
Reluctance Models of Magnetic Components,” IEEE Trans. on Power 
Electronics, Vol. 6, No. 2, April 1991, pp. 240-250

• E. Colin Cherry, “The Duality between Interlinked Electric and Magnetic 
Circuits and the Formation of Transformer Equivalent Circuits,” 
Proceedings of the Physical Society, vol. 62 part 2, section B, no. 350 B, 
Feb. 1949, pp. 101-111

• MIT Staff, Magnetic Circuits and Transformers.  Cambridge, MA:  MIT 
Press, 1943 



Energy Storage

• The magnetic energy stored in one inductor is:

𝑊𝑊𝑀𝑀𝑀 =
1
2
𝐿𝐿𝑖𝑖2

• The energy stored in a set of N coupled windings is:

𝑊𝑊𝑀𝑀𝑀𝑀 =
1
2
𝑖𝑖 T 𝐿𝐿 𝑖𝑖

• The energy stored in a set of 2 coupled windings is:

[ ] ( )2
2222121

2
111

2

1

2212

1211
212 2

2
1

2
1 iLiiLiL

i
i

LL
LL

iiWM ++=















=
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Stability of a Set of Coupled Inductors

• As set of coupled inductors is passive if the magnetic energy storage is 
non-negative for any set of currents

𝑘𝑘122 + 𝑘𝑘232 + 𝑘𝑘312 − 2𝑘𝑘12𝑘𝑘23𝑘𝑘31 ≤ 1

−1 ≤ 𝑘𝑘12 ≤ 1

• For two coupled inductors, this is guaranteed if:

• A set of three coupled inductors is passive if the 
following conditions are met:

Yilmaz Tokad and Myril B. Reed, “Criteria and 
Tests for Realizability of the Inductance Matrix,” 
Trans. AIEE, Part I, Communications and 
Electronics, Vol. 78, Jan. 1960, pp. 924-926
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−1 ≤ 𝑘𝑘 ≤ 1

−1 ≤ 𝑘𝑘23 ≤ 1 −1 ≤ 𝑘𝑘31 ≤ 1



Stability of a Set of Coupled Inductors

• When there are more than three windings, the coupling coefficient matrix 
defined below can be used to determine stability

• A set of coupled inductors is passive if and only if all of the eigenvalues 
of K are non-negative

• There are N eigenvalues for a set of N windings

• Eigenvalue calculations can be calculated using built-in functions of 
programs like Mathcad and Matlab

𝐾𝐾 =

1 𝑘𝑘12 ⋯ 𝑘𝑘1𝑁𝑁
𝑘𝑘21 1 ⋯ 𝑘𝑘2𝑁𝑁
⋮ ⋮ ⋱ ⋮
𝑘𝑘𝑁𝑁𝑁 𝑘𝑘𝑁𝑁𝑁 ⋯ 1

𝑘𝑘𝑞𝑞𝑞𝑞 = 𝑘𝑘𝑟𝑟𝑟𝑟
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Consistency Checks

• The eigenvalue test can let you know if there are measurement errors, but 
it won’t help identify the errors

• The ratios of magnetizing inductances on the same core leg should be 
approximately equal to the square of the turns ratios

• Set up test simulations to verify that the models match the test conditions

• Test leakage inductances by shorting one winding and applying a signal to 
the other winding  (Compute the inductance indicated by the voltage, 
current and frequency)

• Check for coupling polarity errors, especially if there are windings on 
multiple core legs

• Compare test data with multiple windings shorted to simulations or 
calculations with multiple windings shorted 
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Inverse Inductance Matrix

• The inverse inductance matrix, Γ, is the reciprocal of the inductance matrix

Γ = 𝐿𝐿−1

• Each diagonal element is equal to the reciprocal of the inductance of the 
corresponding winding when all of the of the other windings are shorted

• Example application:  You have a four-winding transformer.  What is the 
inductance at winding 1 when windings 3 and 4 are shorted?

• Set up an inductance matrix, Lx, by extracting all of the elements from the 
total inductance matrix that apply only to windings 1, 3 and 4
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Inverse Inductance Matrix Example

𝐿𝐿 =

𝐿𝐿11 𝐿𝐿12 𝐿𝐿13 𝐿𝐿14
𝐿𝐿22 𝐿𝐿22 𝐿𝐿23 𝐿𝐿24
𝐿𝐿31 𝐿𝐿32 𝐿𝐿33 𝐿𝐿34
𝐿𝐿41 𝐿𝐿42 𝐿𝐿43 𝐿𝐿44

𝐿𝐿𝐿𝐿 =
𝐿𝐿11 𝐿𝐿13 𝐿𝐿14
𝐿𝐿31 𝐿𝐿33 𝐿𝐿34
𝐿𝐿41 𝐿𝐿43 𝐿𝐿44

Γ𝑥𝑥 = 𝐿𝐿𝑥𝑥−1• Use a computer program to compute the 
inverse of Lx

•            is the inductance at winding 1 when windings 3 and 4 are shorted
1

Γ𝑥𝑥11

• Remove the outlined elements from L to get Lx
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Modified Node Analysis

• Spice uses Modified Node Analysis (MNA) to set up the circuit equations

• This type of analysis is well suited for handling circuits with coupled 
windings

• A good description of the method is found in:

 L. O. Chua, Linear and Nonlinear Circuits.  New York:  McGraw-Hill, 1987, 
pp. 469-472
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Modified Node Analysis Example
SLIDE # 55

• Assign node numbers
• The reference node is node 0
• Assign currents for each branch
• Compute mutual inductances from the self inductances and coupling 

coefficients
𝐿𝐿12 = 𝑘𝑘 𝐿𝐿11𝐿𝐿22
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• Write a KCL equation using the node-to-datum voltages as variables for 
each node other than the datum node, unless the node has a fixed voltage 
with respect to the datum node.  In that case, write an equation that 
assigns the node voltage to the fixed value. 
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• Node 1 𝑣𝑣1 = 𝑣𝑣𝑠𝑠

• Node 2 𝑖𝑖1 = jω𝐶𝐶1 𝑣𝑣1 − 𝑣𝑣2 = jω𝐶𝐶1 𝑣𝑣𝑠𝑠 − 𝑣𝑣2

• Node 3 𝑖𝑖2 =
𝑣𝑣3
𝑅𝑅1

+ jω𝐶𝐶2𝑣𝑣3 =
1
𝑅𝑅1

+ jω𝐶𝐶2 𝑣𝑣3

• Current variables must be maintained for each coupled inductor

• Other current variables can be replaced by equivalent expressions
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• Write an equation for the voltage dropped across each coupled inductor 
with the node variables on one side and the inductance and current 
terms on the other side

𝑣𝑣2 = jω𝐿𝐿11𝑖𝑖1 − jω𝐿𝐿12𝑖𝑖2

𝑣𝑣3 = jω𝐿𝐿12𝑖𝑖1 − jω𝐿𝐿22𝑖𝑖2

• Note that the minus signs are due to the fact that i2 was assigned to be 
flowing out of the dotted end of the winding instead of into it
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• Rearrange the node equations to facilitate writing matrix equations

𝑣𝑣2 = jω𝐿𝐿11𝑖𝑖1 − jω𝐿𝐿12𝑖𝑖2

𝑣𝑣3 = jω𝐿𝐿12𝑖𝑖1 − jω𝐿𝐿22𝑖𝑖2

𝑖𝑖1 = jω𝐶𝐶1 𝑣𝑣𝑠𝑠 − 𝑣𝑣2 𝑣𝑣2 +
1

jω𝐶𝐶1
𝑖𝑖1 = 𝑣𝑣𝑠𝑠

1
𝑅𝑅1

+ jω𝐶𝐶2 𝑣𝑣3 − 𝑖𝑖2 = 0𝑖𝑖2 =
1
𝑅𝑅1

+ jω𝐶𝐶2 𝑣𝑣3

𝑣𝑣2 − jω𝐿𝐿11𝑖𝑖1 + jω𝐿𝐿12𝑖𝑖2 = 0

𝑣𝑣3 − jω𝐿𝐿12𝑖𝑖1 + jω𝐿𝐿22𝑖𝑖2 = 0
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• Convert the node equations into matrix form 𝐺𝐺 ⋅ 𝑋𝑋 = 𝑈𝑈

1 0
1

jω𝐶𝐶1
0

0
1
𝑅𝑅1

+ jω𝐶𝐶2 0 −1

1 0 −jω𝐿𝐿11 jω𝐿𝐿12
0 1 −jω𝐿𝐿12 jω𝐿𝐿22𝑖𝑖2

⋅

𝑣𝑣2
𝑣𝑣3
𝑖𝑖1
𝑖𝑖2

=

𝑣𝑣𝑠𝑠
0
0
0

𝑣𝑣2 +
1

jω𝐶𝐶1
𝑖𝑖1 = 𝑣𝑣𝑠𝑠

1
𝑅𝑅1

+ jω𝐶𝐶2 𝑣𝑣3 − 𝑖𝑖2 = 0

𝑣𝑣2 − jω𝐿𝐿11𝑖𝑖1 + jω𝐿𝐿12𝑖𝑖2 = 0 𝑣𝑣3 − jω𝐿𝐿12𝑖𝑖1 + jω𝐿𝐿22𝑖𝑖2 = 0

1 2

3 4

1

2

3

4



Modified Node Analysis Example Conclusions

• The matrix equation can be solved numerically in programs like Mathcad or 
Matlab

• The approach is straightforward and can be used with many windings

• If you want to have a symbolic solution, simple cases can be handled with 
equivalent circuits (the cantilever model is easiest for two windings)

• Equivalent circuit equations can get very messy with more than two 
windings

• Is there a better way to find symbolic solutions by using Dr. R. D. 
Middlebrook’s Design-Oriented Analysis techniques?  (I hope to find out)

 See Yahoo Group for information on his analysis techniques:

 https://groups.yahoo.com/neo/groups/Design-Oriented_Analysis_D-OA/info 

 Christophe P. Basso Linear Circuit Transfer Functions: An Introduction to Fast Analytical Techniques

 Vatché Vorpérian, Fast Analytical Techniques for Electrical and Electronic Circuits

SLIDE # 61

https://groups.yahoo.com/neo/groups/Design-Oriented_Analysis_D-OA/info
https://www.amazon.com/Linear-Circuit-Transfer-Functions-Introduction/dp/1119236371/ref=sr_1_1?s=books&ie=UTF8&qid=1465772347&sr=1-1&keywords=christophe+basso
https://www.amazon.com/Analytical-Techniques-Electrical-Electronic-Circuits-ebook/dp/B01CEKKJEU/ref=sr_1_fkmr0_1?s=books&ie=UTF8&qid=1465772960&sr=1-1-fkmr0&keywords=vatche+vorparian


Coupling Stability Example Using Mathcad

Figure 1.   Three coupled windings with resistive loads.

Suppose we have a three-winding inductor with a resistor terminating
each winding as is shown in Fig. 1.  If we externally force an initial
condition of currents in the windings, and then let the inductor "coast"
on its own,  the currents should all exponentially decay to zero as the
stored energy is dissipated.  

If the coupling coefficient matrix is not positive definite, however, at
least one of the eigenvalues for the system will be not be negative. 
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As is shown below, this produces an unstable situation where more
energy can be extracted from the inductor than was initially stored there.

When the initial energy is dissipated, the stored energy becomes
negative, and the inductor continues to deliver power.  This, of course, is
impossible.  Therefore, a set of coupling coefficients in which the coupling
coefficient matrix is not positive definite describes a coupled inductor that
is not physically realizable.  

Because Spice and other circuit simulators allow such inductors to be
specified, it is instructive to examine what happens when nonphysical
sets of coupling coefficients are specified. 
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We first examine a physically-realizable case.  After that, we show what
happens when the coupling coefficients are improperly chosen.

Enter the values of the
inductances and
coupling coefficients

L1 10 µH⋅:= k12 0.96:=

L2 11 µH⋅:= k23 0.99:=

L3 10 µH⋅:= k13 0.98:=
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Construct the
coupling
coefficient matrix.

K

1

k12

k13

k12

1

k23

k13

k23

1











:=

Compute the eigenvalues of 
the coupling coefficient
matrix.

eigenvals K( )

2.953

0.041

5.654 10 3−
×











=

All of the eigenvalues are positive.  As is shown below, this leads to
negative eigenvalues for the time response of the system.



SLIDE # 66

Construct the inductance
matrix.

L

L1

K1 2, L1 L2⋅⋅

K1 3, L1 L3⋅⋅

K1 2, L1 L2⋅⋅

L2

K2 3, L2 L3⋅⋅

K1 3, L1 L3⋅⋅

K2 3, L2 L3⋅⋅

L3















:=

Evaluate the inductance
matrix.

L

10.000

10.069

9.800

10.069

11.000

10.383

9.800

10.383

10.000










µH=

Enter the values of the
resistances

R1 1 Ω⋅:= R2 1 Ω⋅:= R3 1 Ω⋅:=



Enter the initial values of the
currents

I1i 1 A⋅:= I2i 0 A⋅:= I3i 0 A⋅:=

Define a current vector I

I1

I2

I3











Define an initial condition
vector

Ii

I1i

I2i

I3i











:= Ii

1

0

0











A=

We can think of this as a situation in which the current in winding 1 is
externally forced  to be 1 Ampere, and then the circuit is left to dissipate
the stored energy starting at time t = 0.
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Compute the stored energy Ii
T L⋅ Ii⋅ 1.000 10 5−

× J=

The time response of the circuit of Fig. 1 can be described by the following
equation

I1− R1⋅

I2− R2⋅

I3− R3⋅











L
t
Id

d
⋅ (1)

Compute the inverse
inductance matrix Γ L 1−

:= Γ

2.909

1.422

4.327−

1.422

5.263

6.858−

4.327−

6.858−

11.462











1
µH

=
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Compute the eigenvalues of Γ. eigenvals Γ( )
17.251

2.351

0.033











1
µH

=

Write (1) in terms of the inverse
inductance matrix t

Id
d

Γ

I1− R1⋅

I2− R2⋅

I3− R3⋅











⋅ (2)

Write (2) in a way that shows I
in the right side t

Id
d

Γ

R1−

0

0

0

R2−

0

0

0

R3−











⋅ I⋅ (3)
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Define G G Γ

R1−

0

0

0

R2−

0

0

0

R3−











⋅:= (4)

Substitute G into (3)
t
Id

d
G I⋅ (5)

Compute the eigenvalues of G λ eigenvals G( ):= λ

1.725− 107
×

2.351− 106
×

3.277− 104
×













s-1
=
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Compute the eigenvectors of G

Λ eigenvecs G( ):= Λ

0.295

0.501

0.814−

0.77

0.628−

0.107−

0.565

0.595

0.571











s-1
=

The solution to (5) will have the form

I Λ

c1

0

0

0

c2

0

0

0

c3











⋅

e
λ1 t⋅

e
λ2 t⋅

e
λ3 t⋅















⋅ (6)
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The values of the constants c1, c2 and c3 can be determined from the initial
conditions

I0 Λ

c1

c2

c3











⋅

c1

c2

c3











Λ
1−

Ii⋅:=
c1

c2

c3











0.295

0.77

0.565











A s⋅=

Check to see if the initial conditions
are satisfied

Λ

c1

c2

c3











⋅

1

0

0











A= Ii

1

0

0











A=
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Compute a coefficient matrix

C Λ

c1

0

0

0

c2

0

0

0

c3











⋅:= C

0.087

0.148

0.24−

0.594

0.484−

0.083−

0.319

0.336

0.323











A=

(Note that the minimum index value for matrices in this document
is set at 1, not zero.)

Define current
functions

I1 t( ) C1 1, e
λ1 t⋅

⋅ C1 2, e
λ2 t⋅

⋅+ C1 3, e
λ3 t⋅

⋅+:=

I2 t( ) C2 1, e
λ1 t⋅

⋅ C2 2, e
λ2 t⋅

⋅+ C2 3, e
λ3 t⋅

⋅+:=

I3 t( ) C3 1, e
λ1 t⋅

⋅ C3 2, e
λ2 t⋅

⋅+ C3 3, e
λ3 t⋅

⋅+:=
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Check the current values at a few points

I1 0 s⋅( ) 1A= I1 0.1 µs⋅( ) 0.803A= I1 10 µs⋅( ) 0.23A=

I2 0( ) 0A= I2 0.1 µs⋅( ) 0.021− A= I2 10 µs⋅( ) 0.242A=

I3 0( ) 0A= I3 0.1 µs⋅( ) 0.214A= I3 10 µs⋅( ) 0.233A=



I1 drops quickly as the current builds up in the other two windings.  All
of the currents then decay.
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Plot the current values t 0 10 9− s⋅, 20 10 7−
⋅ s⋅..:=

   ,

0 5 .10 7 1 .10 6 1.5 .10 6 2 .10 6
0.5

0

0.5

1

I1 t( )

I2 t( )

I3 t( )

t

Fig. 2.  Winding Currents.



Define a current vector to facilitate
calculating the stored energy. I t( )

I1 t( )

I2 t( )

I3 t( )











:=

Define a function to compute the stored energy. W t( )
1
2

I t( )( )T⋅ L⋅ I t( )⋅:=
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t 0 10 7− s⋅, 10 5− s⋅..:=

0 2 .10 6 4 .10 6 6 .10 6 8 .10 6 1 .10 5
2 .10 6

3 .10 6

4 .10 6

5 .10 6

W t( )

t

Fig. 3.  Stored energy, J.

The stored energy is dissipated as expected.
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We can now examine a case where the coupling coefficient are improperly
specified. Are relatively small change in one of the couple coefficients is all
that is  required to create an unstable configuration. 

Enter the values of
the inductances and
coupling coefficients

L1 10 µH⋅:= k12 0.96:=

L2 11 µH⋅:= k23 0.99:=

L3 10 µH⋅:= k13 0.99:=

(Previously 0.98)
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Construct the
coupling
coefficient matrix.

K

1

k12

k13

k12

1

k23

k13

k23

1











:=

Compute the eigenvalues of 
the coupling coefficient
matrix.

eigenvals K( )

2.96

0.04

6.757− 10 5−
×











=

One of the eigenvalues is negative.  As is shown below on, this makes
one of the eigenvalues for the time response of the system positive.
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Construct the inductance
matrix.

L

L1

K1 2, L1 L2⋅⋅

K1 3, L1 L3⋅⋅

K1 2, L1 L2⋅⋅

L2

K2 3, L2 L3⋅⋅

K1 3, L1 L3⋅⋅

K2 3, L2 L3⋅⋅

L3















:=

Evaluate the inductance
matrix.

L

10.000

10.069

9.900

10.069

11.000

10.383

9.900

10.383

10.000










µH=

Enter the values of the
resistances

R1 1 Ω⋅:= R2 1 Ω⋅:= R3 1 Ω⋅:=
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Enter the initial values of the
currents

I1i 1 A⋅:= I2i 0 A⋅:= I3i 0 A⋅:=

Define an initial condition
vector

Ii

I1i

I2i

I3i











:= Ii

1

0

0











A=

Compute the stored energy Ii
T L⋅ Ii⋅ 1.000 10 5−

× J=
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Compute the inverse
inductance matrix Γ L 1−

:= Γ

248.75−

239.557−

495

239.557−

226.136−

471.964

495

471.964

980−











1
µH

=

Compute the eigenvalues of  Γ. eigenvals Γ( )
1.457− 103

×

2.385

0.033











1
µH

=



SLIDE # 83

Define G G Γ

R1−

0

0

0

R2−

0

0

0

R3−











⋅:= (4)

Compute the eigenvalues of G λ eigenvals G( ):= λ

1.457 109
×

2.385− 106
×

3.27− 104
×













s 1−
=

One of the eigenvalues is positive, so the system is unstable.
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Compute the eigenvectors of G

Λ eigenvecs G( ):= Λ

0.414−

0.395−

0.82

0.713−

0.701

0.023−

0.566

0.594

0.572











s-1
=

I Λ

c1

0

0

0

c2

0

0

0

c3











⋅

e
λ1 t⋅

e
λ2 t⋅

e
λ3 t⋅















⋅ (6)

The solution to (5) will have the form
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The values of the constants c1, c2 and c3 can be determined from the initial
conditions

I0 Λ

c1

c2

c3











⋅

c1

c2

c3











Λ
1−

Ii⋅:=
c1

c2

c3











0.414−

0.713−

0.566











A s⋅=

Check to see if the initial conditions
are satisfied

Λ

c1

c2

c3











⋅

1

0

0











A= Ii

1

0

0











A=
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Compute a coefficient matrix

C Λ

c1

0

0

0

c2

0

0

0

c3











⋅:= C

0.172

0.164

0.34−

0.508

0.5−

0.016

0.32

0.336

0.323











A=

Define current
functions

I1 t( ) C1 1, e
λ1 t⋅

⋅ C1 2, e
λ2 t⋅

⋅+ C1 3, e
λ3 t⋅

⋅+:=

I2 t( ) C2 1, e
λ1 t⋅

⋅ C2 2, e
λ2 t⋅

⋅+ C2 3, e
λ3 t⋅

⋅+:=

I3 t( ) C3 1, e
λ1 t⋅

⋅ C3 2, e
λ2 t⋅

⋅+ C3 3, e
λ3 t⋅

⋅+:=
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Check the current values at a few points

I1 0 s⋅( ) 1A= I1 0.01 µs⋅( ) 4 105
× A= I1 0.1 µs⋅( ) 3.344 1062

× A=

I2 0 s⋅( ) 0A= I2 0.01 µs⋅( ) 3 105
× A= I2 0.1 µs⋅( ) 3.189 1062

× A=

I3 0 s⋅( ) 0A= I3 0.01 µs⋅( ) 7− 105
× A= I3 0.1 µs⋅( ) 6.621− 1062

× A=



I1 rises instead of decaying.  The other currents start at zero
and then build up.
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Plot the current values t 0 10 11− s⋅, 4.2 10 9−
⋅ s⋅..:=

0 5 .10 10 1 .10 9 1.5 .10 9

4

2

0

2

4

I1 t( )

I2 t( )

I3 t( )

t

Fig. 4.  Winding Currents.



Define a current vector to facilitate calculating
the stored energy. I t( )

I1 t( )

I2 t( )

I3 t( )











:=

Define a function to compute the stored energy. W t( )
1
2

I t( )( )T⋅ L⋅ I t( )⋅:=
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The stored energy decays to zero, but it then goes negative as our imaginary inductor
pumps out energy at a rapidly-increasing rate.

One of the things that we can learn from this example is that estimating values for
coupling coefficients can easily produce a nonphysical circuit.  Trying to simulate
such a circuit may produce frustration as one tries to figure out why the circuit won't
converge. 
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Fig. 5.  Stored energy.
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